
SOSCON 2018

SOSCON
Attack and Defense on Linux kernel

SAMSUNG Research | Security Team | Jinbum Park

2018.10.18

SOSCON 2018

Full steps of attack on Linux kernel

Attack-1 : Modify sensitive RW data

Defense-1 : ro-after-init

Attack-2 : Modify process credential

Defense-2 : PrivWatcher

Attack-3 : addr_limit bug

Defense-3 : Add checking for addr_limit

Attack-4 : Modify addr_limit via stack-based attack

Defense-4 : Split addr_limit from stack

+ Bonus : Advanced attacks

Contents

SOSCON 2018

Full steps of attack on Linux kernel

SOSCON 2018 Full steps of attack on Linux kernel

Bypass
KASLR

Exploit
Vulnerability

Arbitrary
Memory write

Modify
somewhere

Get Root,
or Bypass something

SOSCON 2018 Full steps of attack on Linux kernel

Bypass
KASLR

Exploit
Vulnerability

Arbitrary
Memory write

Modify
somewhere

Get Root,
or Bypass something

• Exploit Linux kernel vulnerabilities.

• By exploiting them, Attacker can

 - Modify control flow,

 - Do arbitrary memory write.

SOSCON 2018 Full steps of attack on Linux kernel

Bypass
KASLR

Exploit
Vulnerability

Arbitrary
Memory write

Modify
somewhere

Get Root,
or Bypass something

• It means ability to modify

 - Limited RW Linux kernel memory, or Any RW Linux kernel memory.

• Can attacker write any values they want?

 - Depends on previous step “Exploit Vulnerability”

SOSCON 2018 Full steps of attack on Linux kernel

Bypass
KASLR

Exploit
Vulnerability

Arbitrary
Memory write

Modify
somewhere

Get Root,
or Bypass something

• Which data is the most attractive for attacker?

 - Function Pointer, Flags which are used for security checking.

• Attacker can get root by modifying function pointer.

• Attacker can bypass security mechanism by modifying some flags.

SOSCON 2018 Full steps of attack on Linux kernel

Bypass
KASLR

Exploit
Vulnerability

Arbitrary
Memory write

Modify
somewhere

Get Root,
or Bypass something

Final Goal!!

SOSCON 2018

Attack-1 :
Modify sensitive RW data

SOSCON 2018 Modify sensitive RW data

Bypass
KASLR

Exploit
Vulnerability

Arbitrary
Memory write

Modify
somewhere

Get Root,
or Bypass something

SOSCON 2018

Sensitive RW data : Function Pointer

Why function pointer is critical?

Let’s look at Linux kernel 3.10.

- If attacker can modify function pointer - .secmark_refcount_inc,

 What can attacker do?

Modify sensitive RW data

SOSCON 2018

Sensitive RW data : Function Pointer

- Attacker can call other security-critical function which has same function type.

- “reset_security_ops()” disables Linux security module such as Smack, SELinux, …

 So that, Attacker can bypass Linux security module!!

Modify sensitive RW data

Normal

Malicious!!

Possible??

SOSCON 2018

Sensitive RW data : Flags which are used for security checking

Let’s look at Linux kernel 3.10.

Modify sensitive RW data

Flag to represent whether
SELinux is initialized or not.

Used for security checking!

If attacker can set this to 0,
Reinitializing SELinux policy is possible!!
And other operations too!!

SOSCON 2018

Sensitive RW data : Flags which are used for security checking

- Defeating Samsung KNOX with zero privilege, Di shen, Blackhat USA 2017

  This was a real world attack to hack Galaxy S7 edge!!

Modify sensitive RW data

Flag to represent whether
SELinux is initialized or not.

SOSCON 2018

Defense-1 :
ro-after-init

SOSCON 2018

Read only after initialization

- What is a key insight inside ro-after-init?

 - A lot of RW data are used to be written only one time.

 - When??  Kernel Initialization time!!

 - Then??  The RW data can be marked as read-only after initialization!

 - It reduces a lot of attack surface with no performance overhead!!

ro-after-init

SOSCON 2018

Read only after initialization

- How to apply ro-after-init?

 - Just add keyword “_ro_after_init” to variables which you want to protect.

 - Limitation : Developer should know which variables can be marked as ro-after-init.

 Automatic process for marking them has not been appeared yet.

ro-after-init

SOSCON 2018

Read only after initialization

- Real-world cases for protecting function pointers

ro-after-init

Linux kernel 4.12

Linux kernel 4.8

SOSCON 2018

Summary

ro-after-init

Reduce attack surface as much as possible!!

SOSCON 2018

Attack-2 :
Modify process credential

SOSCON 2018 Modify process credential

Bypass
KASLR

Exploit
Vulnerability

Arbitrary
Memory write

Modify
somewhere

Get Root,
or Bypass something

Process credential

SOSCON 2018

cred

Modify process credential

Credential for this process.
We will modify this!

Kernel structure to represent one process

Credential is tightly related to
permission of process!!

SOSCON 2018

Type1 : Function calls to modify cred for root

Modify process credential

- Attacker executes below two function calls. (kernel function)

Make a new cred for root (uid=0) Apply the new cred
to current process

- These function calls makes attacker to get root!!

- A lot of real-world attacks use this technique,

 - CVE-2016-0728, …

SOSCON 2018

Type2 : Reuse init_cred

Modify process credential

Original cred for user permission

init_cred for root permission

SOSCON 2018

Type3 : Modify cred itself

Modify process credential

Modify these directly!!

SOSCON 2018

Defense-2 :
PrivWatcher

SOSCON 2018

Paper

PrivWatcher

- PrivWatcher: Non-bypassable Monitoring and Protection of Process
Credentials from Memory Corruption Attacks,

 AsiaCCS 2017, Samsung Research America

  This is a paper proposed by Samsung Research America!!

  This is not merged in Linux kernel mainline.

  Is this merged in Linux kernel for Galaxy??

SOSCON 2018

Simple principle for defense

PrivWatcher

cred Reader / Writer
PrivWatcher

Monitor
If It’s valid

If It’s not valid, drop the access.

- Attack Type1 : Function calls to modify cred

- Attack Type2 : Reuse init_cred

- Attack Type3 : Manipulate cred itself

 PrivWatcher can prevent all attack types!! Prevent privilege escalation through cred.

SOSCON 2018

Is this merged in Linux kernel for Galaxy?

PrivWatcher

- Not same solution to PrivWatcher.

 But, There is a similar solution

 in after Galaxy S7.

Galaxy Note9 Kernel Code

SOSCON 2018

Summary

Modify process credential

You can add your security solution into your product!

SOSCON 2018

Attack-3 :
addr_limit bug

SOSCON 2018 addr_limit bug

Bypass
KASLR

Exploit
Vulnerability

Arbitrary
Memory write

Modify
somewhere

Get Root,
or Bypass something

addr_limit bug Read/Write all kernel memory

SOSCON 2018

What is addr_limit?

- Look at “struct thread_info” which is generated per process.

- It’s different per CPU type. Below one is for arm64.

- addr_limit have a role like partition between user and kernel space.

addr_limit bug

SOSCON 2018

Normal state-flow of addr_limit

addr_limit bug

User : addr_limit == USER_DS

Kernel : addr_limit == KERNEL_DS

User : addr_limit == USER_DS

Can access user space only

Can access user+kernel space

Can access user space only

Updated by Kernel or Kernel driver

Restored by Kernel or Kernel driver

SOSCON 2018

Mistaken state-flow of addr_limit (mistakes from developer)

addr_limit bug

User : addr_limit == USER_DS

Kernel : addr_limit == KERNEL_DS

User : addr_limit == KERNEL_DS

Can access user space only

Can access user+kernel space

Can access user+kernel space!!
Read/Write all Kernel memory!!

Miss restore!! (human error)

SOSCON 2018

Real-world vulnerability

addr_limit bug

addr_limit == KERNEL_DS

Not restored!!

- This is one of real-world vulnerabilities, which in LG G4 touch screen driver in Android.

SOSCON 2018

How can modify kernel memory actually??

addr_limit bug

- Then, Can an attacker modify kernel memory like above?? (after addr_limit bug)

 Definitely No…

- How to modify??

 - Exploiting pipe subsystem (http://blog.daum.net/tlos6733/184)

memcpy(kernel_addr, buf, len);

< User >

User : addr_limit == KERNEL_DS

http://blog.daum.net/tlos6733/184

SOSCON 2018

Defense-3 :
Add checking for addr_limit

SOSCON 2018

What is the most critical problem for handling addr_limit?

- Possibility of human error!!

Add checking for addr_limit

User : addr_limit == USER_DS

Kernel : addr_limit == KERNEL_DS

User : addr_limit == KERNEL_DS

Human error point!!

SOSCON 2018

Solution

- Enforce security-checking when returned from Kernel to User.

Add checking for addr_limit

User : addr_limit == USER_DS

Kernel : addr_limit == KERNEL_DS

User : addr_limit == KERNEL_DS

Checking!! Reporting error!!
Process will be killed!!

SOSCON 2018

Solution

Add checking for addr_limit

SOSCON 2018

Summary

Add checking for addr_limit

Enforce security checking to eliminate human errors!!

SOSCON 2018

Attack-4 :
Modify addr_limit

via stack-based attack

SOSCON 2018 Modify addr_limit via stack-based attack

Bypass
KASLR

Exploit
Vulnerability

Arbitrary
Memory write

Modify
somewhere

Get Root,
or Bypass something

Stack overflow
 Modify addr_limit

Read/Write all kernel memory

SOSCON 2018

Where “addr_limit” be stored? In kernel stack!!

Modify addr_limit via stack-based attack

Kernel Stack

struct thread_info {
addr_limit

*task }

high addr

low addr

struct task_struct {
*stack

}

Process descriptor

Kernel stack
per process

SOSCON 2018

How about trying stack overflow attack as a classic?

Modify addr_limit via stack-based attack

Kernel Stack

struct thread_info {
addr_limit

*task }

high addr

low addr

Kernel stack
per process

Normal writes

Overflows!!

SOSCON 2018

Stack overflow – Type 1: classic buffer overflow

Modify addr_limit via stack-based attack

Kernel Stack

struct thread_info {
addr_limit

*task }

int vul_func(char *arg, unsigned int len)
{
 char buf[64];
 ….
 memcpy(buf, arg, len);
 ….
}

buf

Vulnerability

Attack succeed? depends on vulnerability.
In some cases, Process may be crashed because of
dummy writes.

dummy writes

SOSCON 2018

Stack overflow – Type 2: out-of-bound index

Modify addr_limit via stack-based attack

Kernel Stack

struct thread_info {
addr_limit

*task }

int vul_func(int idx, int val)
{
 int arr[64];
 ….
 arr[idx] = val;
 ….
}

arr

Vulnerability

Attack succeed? Yap! It seems be possible!!
But,, Is it in real world?? May be no..

SOSCON 2018

arr

Stack overflow – Type 3: VLA (Variable Length Array)

Modify addr_limit via stack-based attack

Kernel Stack

struct thread_info {
addr_limit

*task }

int vul_func(int size, int off, int val)
{
 int arr[size];
 ….
 for (i=0; i<size; i++)
 arr[i] = val;
 ….
}

Vulnerability

Attack succeed? Depends on vulnerability.
Is it in real world?
 CVE-2010-3848, CVE-2010-3850

SOSCON 2018

buf

Stack overflow – Type 4: Recursion

Modify addr_limit via stack-based attack

Kernel Stack

struct thread_info {
addr_limit

*task }

int vul_func(char *str)
{
 char buf[64];
 ….
 if (~~)
 vul_func(str);
 ….
 strcpy(buf, str);
}

Vulnerability

Attack succeed? Too difficult..
Is it in real world?
 CVE-2016-1583

SOSCON 2018

Stack overflow – Summary

Modify addr_limit via stack-based attack

- Type1 : Classic buffer overflow, Simple, No vulnerability these days

- Type2 : Out-of-bound index, Simple, No vulnerability these days

- Type3 : VLA (Variable Length Array), Complex, Real-world vulnerability

- Type4 : Recursion, Complex, Real-world vulnerability

 No more simple vulnerability!! Only remains complex vulnerability!!

SOSCON 2018

Defense-4 :
Split addr_limit from stack

SOSCON 2018

Why “struct thread_info” be in kernel stack??

Split addr_limit from stack

Kernel Stack

struct thread_info {
addr_limit

*task }

high addr

low addr

If “struct thread_info” can be stored
somewhere not related to kernel stack,,
Safe against the previous stack-based attack!!

SOSCON 2018

Why “struct thread_info” be in kernel stack??

Split addr_limit from stack

Kernel Stack

struct thread_info {
addr_limit

*task }

high addr

low addr

There is no meaningful relationship
between Kernel stack and thread_info!
We can split them!!
It’s a problem of SW design.

Wait.. Then,,

Why “struct thread_info”
be in kernel stack?

SOSCON 2018

Stack pointer to point task_struct

Split addr_limit from stack

Kernel Stack

struct thread_info {
addr_limit

*task }

high addr

low addr

SP (Stack Pointer)

Access from register!!
Too fast!!

- Access from register is faster than from memory.

- There is a register to point kernel stack, called SP.

- There are a lot of accesses to task.

- If thread_info is in kernel stack,

 We can access task through SP reg.

- So that,, Performance is improved!

SOSCON 2018

Split addr_limit from stack

Split addr_limit from stack

Kernel Stack
struct thread_info {

addr_limit
*task }

SP (Stack Pointer) Pointer

- “Pointer” is needed for pointing thread_info instead of SP.

Performance : Register Memory Security is ok, But..
Performance overhead here!!

SOSCON 2018

Optimization on Intel x86_64

Split addr_limit from stack

Kernel Stack
struct thread_info {

addr_limit
*task }

SP (Stack Pointer) Per-cpu pointer

Performance : Register Memory

Security is ok, and Overhead is not bad!!

Per-cpu

SOSCON 2018

Optimization on ARM 64

Split addr_limit from stack

Kernel Stack
struct thread_info {

addr_limit
*task }

SP (Stack Pointer)

Performance : Register Memory

Security is ok, and Overhead is near zero!!

Per-cpu

Unused Register

SOSCON 2018

Tradeoff between Security and Performance

Split addr_limit from stack

Performance : Register Memory

Always there is a tradeoff between Performance and Security..

Are “Register” and “Per-cpu” really safe?? Hmm...

Per-cpu

Security : Register Memory Per-cpu

SOSCON 2018

Summary

Split addr_limit from stack

Defense solution for fixing SW design problem

have to satisfy both

Security and Performance!!

SOSCON 2018

+ Bonus :
Advanced attacks

SOSCON 2018 Advanced attacks

Bypass
KASLR

Exploit
Vulnerability

Arbitrary
Memory write

Modify
somewhere

Get Root,
or Bypass something

Focusing on here!

SOSCON 2018

Pick two keywords of advanced attacks

Adjacent / Spraying

Advanced attacks

SOSCON 2018

Adjacent, Type1 : Heap / Stack

How about trigger overflows from Stack to Heap?

If stack is completely safe, We can consider this approach!

a.k.a. Large Memory Vulnerabilities, or Stack Clash

Advanced attacks

High addr

Low addr

Kernel Stack

Kernel Heap

SOSCON 2018

Adjacent, Type2 : Stack of Process A / Stack of Process B

How about trigger overflows

from Process A’s stack to Process B’s stack?

- CVE-2010-3848, CVE-2010-3850

Advanced attacks

High addr

Low addr

Kernel Stack
(Process A)

Kernel Stack
(Process B)

SOSCON 2018

Adjacent, Type3 : Heap object A / Heap object B

How about trigger overflows

from Heap object A to Heap object B?

Attacker can’t modify func_ptr in object A,

But, Can modify func_ptr in object B!!

Advanced attacks

High addr

Low addr

Heap object A
(not contain func_ptr)

Heap object B

(contain func_ptr)

SOSCON 2018

Spraying

- Assume that attacker get an ability to write value to kernel memory A.

- Kernel memory A is random address. Attacker doesn’t know what here it is.

Advanced attacks

Attacker

Memory A
(dummy)

Write something!! But,, nothing happens…

SOSCON 2018

Spraying

Advanced attacks

Attacker

func_ptr

(2) Write something!! Function pointer is changed!! Lucky!!

func_ptr func_ptr func_ptr func_ptr

Memory A

(1) Spraying!!

SOSCON 2018

THANK YOU

Sample exploit code is at

https://github.com/jinb-park/linux-exploit/tree/master/samples/adjacent-kstacks

