SOSCON
Attack and Defense on Lin

SAMSUNG Research | Security Team | Jinbum Park
2018.10.18

Contents

Full steps of attack on Linux kernel
Attack-1 : Modify sensitive RW data
Defense-1 : ro-after-init

Attack-2 : Modify process credential
Defense-2 : PrivWatcher

Attack-3 : addr_limit bug

Defense-3 : Add checking for addr_limit
Attack-4 : Modify addr_limit via stack-based attack
Defense-4 : Split addr_limit from stack

+ Bonus : Advanced attacks

Full steps of attack

Full steps of attack on Linux kernel /// SOSCON 2018

Bypass Exploit Arbitrary
KASLR Vulnerability Memory write
Modify Get Root,
somewhere or Bypass something

Full steps of attack on Linux kernel

/// SOSCON 2018

Bypass Exploit Arbitrary
KASLR Vulnerability Memory write

B

Modify
somewhere

Get Root,
or Bypass something

>

« Exploit Linux kernel vulnerabilities.
« By exploiting them, Attacker can

- Modify control flow,

- Do arbitrary memory write.

Full steps of attack on Linux kernel f// SOSCON 2018

Bypass Exploit Arbitrary
KASLR Vulnerability Memory wr|te (
Modify Get Root,
somewhere or Bypass something
« It means ability to modify

- Limited RW Linux kernel memory, or Any RW Linux kernel memor
« Can attacker write any values they want?
- Depends on previous step “Exploit Vulnerability”

Full steps of attack on Linux kernel f” SOSCON 2018
(

Bypass Exploit Arbitrary .
KASLR Vulnerability Memory write (
Modify Get Root,
somewhere or Bypass something

« Which data is the most attractive for attacker?
- Function Pointer, Flags which are used for security checking.
« Attacker can get root by modifying function pointer.
- Attacker can bypass security mechanism by modifying some flags.

Full steps of attack on Linux kernel ﬁ SOSCON 2018

i

Bypass Exploit Arbitrary
KASLR Vulnerability Memory write

Modify Get Root,
somewhere or Bypass somethlng

HnaIGoaH'

Attack-1
Modify sensitiv

(

Modify sensitive RW data f// SOSCON 2018
\

AN ANN AN AN

; Bypass ;2 I:XP"U".[. ; 2 Amy. 2
Modify Get Root,
somewhere or Bypass something

' Modify sensitive RW data S0SCON 2018

“Sensitive RW data : Function Pointer

Why function pointer is critical?
Let’s look at Linux kernel 3.10.

(- If attacker can modify function pointer - .secmark_refcount_inc,
What can attacker do?

' Modify sensitive RW data S0SCON 2018

““Sensitive RW data : Function Pointer

Normal

Malicious!!

Possible??

~- Attacker can call other security-critical function which has same function type.
= “reset_security_ops()” disables Linux security module such as Smack, SELinux, ...
So that, Attacker can bypass Linux security module!!

(’ ‘Modify sensitive RW data S0SCON 2018

“Sensitive RW data : Flags which are used for security checking

Let’s look at Linux kernel 3.10.

Flag to represent whether
SELinux is initialized or not.

7
Used for security checking! é//\

If attacker can set this to O,
Reinitializing SELinux policy is possible!!
And other operations too!!

(’ ‘Modify sensitive RW data S0SCON 2018

“Sensitive RW data : Flags which are used for security checking

=zidtab =idtab:

Flag to represent whether
SELinux is initialized or not.

s
/
/

78
- Defeating Samsung KNOX with zero privilege, Di shen, Blackhat USA 2017 Q

(=» This was a real world attack to hack Galaxy S7 edge!!

Defense
ro-afte

" ro-after-init SOSCON 2018

““Read only after initialization

- What is a key insight inside ro-after-init?

- A lot of RW data are used to be written only one time.

- When?? =» Kernel Initialization time!!

- Then?? =» The RW data can be marked as read-only after initialization!
- It reduces a lot of attack surface with no performance overhead!!

" ro-after-init SOSCON 2018

“Read only after initialization

- How to apply ro-after-init?

LT = .-'-||"|-:.=-
1 Pl N L e) P .

- Just add keyword *_ro_after_init” to variables which you want to protect.
- Limitation : Developer should know which variables can be marked as ro-after-init.
Automatic process for marking them has not been appeared yet.

(

" ro-after-init SOSCON 2018

“Read only after initialization

- Real-world cases for protecting function pointers

Linux kernel 4.8

Linux kernel 4.12

E

~Summary

ro-after-init SOSCON 2018

(

Reduce attack surface as much as possible!!

Attack-2
Modify process

(

Modify process credential ﬁ SOSCON 2018
\

AN ANN AN AN

; Bypass ;2 I:XP"U".[. ; 2 Amy. 2
Modify Get Root,
somewhere or Bypass something

Process credential

/[" Modify process credential SOSCON 2018
N

> Kernel structure to represent one process

Credential for this process.
We will modify this!

Credential is tightly related to
permission of process!!

(’ ~Modify process credential SOSCON 2018

\-inypel : Function calls to modify cred for root

- Attacker executes below two function calls. (kernel function)

COoOmmi T

to current process

“These function calls makes attacker to get root!!
\A lot of real-world attacks use this technique,
(= CVE-2016-0728, ...

\

(’ ~Modify process credential SOSCON 2018

\--‘Typez : Reuse init_cred

Original cred for user permission]

init_cred for root permission]

(’ ~Modify process credential SOSCON 2018

\--‘Type3 : Modify cred itself

Modify these directly!!

Defense
PrivWa

/[‘ PrivWatcher SOSCON 2018
\

~Paper

- PrivWatcher: Non-bypassable Monitoring and Protection of Process
Credentials from Memory Corruption Attacks,

AsiaCCS 2017, Samsung Research America

=» This is a paper proposed by Samsung Research America!!
=» This is not merged in Linux kernel mainline.
=» Is this merged in Linux kernel for Galaxy??

(

@PrivWatcher SOSCON 2018

Léimple principle for defense

. = PrivWatcher _ [A]
[Reader / Writer]_ Monitor PR

If It's vali

If It's not valid, drop the access.

- Attack Typel : Function calls to modify cred
—- Attack Type2 : Reuse init_cred
((- Attack Type3 : Manipulate cred itself

3 PrivWatcher can prevent all attack types!! Prevent privilege escalation through cred.

~PrivWatcher SOSCON 2018

s this merged in Linux kernel for Galaxy?

- Not same solution to PrivWatcher.
But, There is a similar solution
in after Galaxy S7.

Galaxy Note9 Kernel Code

E

~Summary

Modify process credential SOSCON 2018

 ——

You can add your security solution into your product!

Attack-
addr_limi

addr_limit bug ﬁ SOSCON 2018

\

— Bypass AN Exploit Arbitrary

Vulnerablllty Memory wrlte
Modify Get Root,
somewhere or Bypass something

addr_limit bug Read/Write all kernel memory

‘~addr_limit bug SOSCON 2018
“What is addr_limit?

- Look at “struct thread_info” which is generated per process.
- It’s different per CPU type. Below one is for armé64.

thread info {

T I'._Ei egmen t-_t-
LasSk SLILUCL p
preempt count;
cpu;

(

- addr_limit have a role like partition between user and kernel space.

[

-i\lormal state-flow of addr_limit

(addr_limit bug SOSCON 2018

[User : addr_limit == USER_DS] Can access user space only

‘ Updated by Kernel or Kernel driver

[Kernel : addr limit == KERNEL_DS] Can access user+kernel space

‘ Restored by Kernel or Kernel driver

([User : addr_limit == USER_DS] Can access user space only

[

Mistaken state-flow of addr_limit (mistakes from developer)

(addr_limit bug SOSCON 2018

[User : addr_limit == USER_DS] Can access user space only

¥

[Kernel : addr limit == KERNEL_DS] Can access user+kernel space

‘ Miss restore!! (human error)

Can access user+kernel space!!
Read/Write all Kernel memory!!

([User : addr_limit == KERNEL DS]

-addr_limit bug SOSCON 2018
—-?'Real-world vulnerability

int _write_log(char #filename, char +data)

1

struct file +file:

if (f54_window_crack || f%_window_crack_check_mode == 00 4

= get_fs();
et_fs(KERNEL_DS): .
. aais [_CREAT: —> addr_limit == KERNEL_DS

if (filename) {
file = filp_openifilerame, flags. OBEE):
sys_chmod(f i |erame, 0BGG):

aloo X

TOUCH_E("%s : filename is MULL, can not open FILBE#R",
[func_)]—) Not restored!!
return -1:

@}-

= This is one of real-world vulnerabilities, which in LG G4 touch screen driver in Android.

|

-How can modify kernel memory actually??

{addr_limit bug SOSCON 2018

memcpy(kernel_addr, buf, len); [User : addr_limit == KERNEL_DS]

< User >

- Then, Can an attacker modify kernel memory like above?? (after addr_limit bug)
Definitely No...

- How to modify??

(- Exploiting pipe subsystem (http://blog.daum.net/tlos6733/184)

http://blog.daum.net/tlos6733/184

Defense-
Add checking for

~Add checking for addr_limit SOSCON 2018

|

What is the most critical problem for handling addr_limit?

- Possibility of human error!!

[User : addr limit == USER_DS]

A

[Kernel : addr _limit == KERNEL_DS] %

‘ Human error point!!

[User : addr _limit == KERNEL_DS]

@Add checking for addr_limit SOSCON 2018

Solution

- Enforce security-checking when returned from Kernel to User.

[User : addr limit == USER_DS]

[Kernel : addr _limit == KERNEL_DS] %

Checking!! Reporting error!!
Process will be killed!!

[User : addr _limit == KERNEL_DS]

" Add checking for addr_limit SOSCON 2018

* Solution

set fs({mm segment t f=3)

current thread info()-»addr limit = fs;

/[- Add checking for addr_limit SOSCON 2018

\--Summary

 ——

Enforce security checking to eliminate human errors!!

Attack-4 :
Modify addr_
via stack-base

Modify addr_limit via stack-based attack ﬁ SOSCON 2018

\

AN Bypass AN Exploit Arbitrary
Vulnerablllty Memory wr|te
Modify Get Root,
somewhere or Bypass something
Stack overflow Read/Write all kernel memory

= Modify addr_limit

@Modify addr_limit via stack-based attack SOSCON 2018

‘Where “addr_limit” be stored? In kernel stack!!

Kernel stack high addr
per process Kernel Stack

Process descriptor

struct_task_struct { v
*stac L
N\
} \\ N
\ \
' N\
T \
' \
N N\
' \

S I'< struct thread_info {

S Mo [addr_limit
N ~d *task) low addr

J.

How about trying stack overflow attack as a classic?

(Modify addr_limit via stack-based attack SOSCON 2018

Kernel stack Kernel Stack high addr
per process

Normal wriltes

Overflows!

low addr

@Modify addr_limit via stack-based attack SOSCON 2018

“Stack overflow — Type 1: classic buffer overflow

Vulnerability

Kernel Stack int vul_func(char *arg, unsigned int len)

{

buf €——— char buf[64];
<€ .r.ﬁ.emcpy(buf, arg, len);
dummy writes }

e i a6l | Attack succeed? depends on vulnerability.
Sdanian In some cases, Process may be crashed because of
—Task dummy writes.

@Modify addr_limit via stack-based attack SOSCON 2018

“Stack overflow — Type 2: out-of-bound index

Vulnerability

Kernel Stack int vul_func(int idx, int val)

{
arr €—— int arr[64];

< arr[idx] = val;

s hese, il | Attack s.uc.ceed? Yap! It seems be possible!!
addr_limit But,, Is it in real world?? May be no..

~ *task }

{Modify addr_limit via stack-based attack SOSCON 2018

“Stack overflow — Type 3: VLA (Variable Length Array)

Vulnerability

Kernel Stack int vul_func(int size, int off, int val)

{
int arr[size];
/ for (i=0; i<size; i++) ~
arr[i] = val; 7

struct thread_info Attack succeed? Depends on vulnerability.
addr_limit Is it in real world?

~ “task'} - CVE-2010-3848, CVE-2010-3850

arr

@Modify addr_limit via stack-based attack

“Stack overflow — Type 4: Recursion

Kernel Stack

Vulnerability

int vul_func(char *str)

buf

{
char buf[64];
/ -
vul_func(str);

~ *task }

/ '.S.’Ercpy(buf, str);
}

struct thread_info -
addr limit Attack succeed? Too difficult..

Is it in real world?
- CVE-2016-1583

SOSCON 2018

[

“Stack overflow — Summary

(Modify addr_limit via stack-based attack SOSCON 2018

- Typel : Classic buffer overflow, Simple, No vulnerability these days
- Type2 : Out-of-bound index, Simple, No vulnerability these days

- Type3 : VLA (Variable Length Array), Complex, Real-world vulnerability
- Type4 : Recursion, Complex, Real-world vulnerability

—=>» No more simple vulnerability!! Only remains complex vulnerability!!

(

Defense-
Split addr_limit

@Split addr_limit from stack SOSCON 2018

-“Why “struct thread_info” be in kernel stack??

high addr
Kernel Stack

If “struct thread_info” can be stored
somewhere not related to kernel stack,,
Safe against the previous stack-based attack|I

struct thread_info {
addr_limit
*task } low addr

f\[SpIit addr_limit from stack SOSCON 2018

hy “struct thread_info” be in kernel stack??

high addr

Kernel Stack\

There is no meaningful relationship
between Kernel stack and thread_info!
We can split them!!

It's a problem of SW design.

Wait.. Then,,

Why “struct thread_info”
[Stfuct thread_info { be in kernel stack?

addr_limit
*task } low addr

@Split addr_limit from stack SOSCON 2018

Stack pointer to point task_struct

- high addr
- Access from register is faster than from memory. Kernel Stack

- There is a register to point kernel stack, called SP.
- There are a lot of accesses to task.
- If thread_info is in kernel stack,

We can access task through SP reg.

So that,, Performance is improved!

Access from register!!
Too fast!!

| SP (Stack Pointer) struct thread_info {
| \ addr_limit
————{ *task) low addr

@Split addr_limit from stack SOSCON 2018

éplit addr_limit from stack

struct thread_info {

addr_limit Kernel Stack
*task }
Pointer SP (Stack Pointer)

<<< - "Pointer” is needed for pointing thread_info instead of SP.
| Performance : Register §>i Memory i Security is ok, But..
| e ' Performance overhead here!!

@Split addr_limit from stack SOSCON 2018

|

Optimization on Intel x86_64

struct thread_info {

addr_limit Kernel Stack
*task }
Per-cpu pointer SP (Stack Pointer)

- 1 1
<<< Performance : Register » | Per-cpu i» Memory
. 1

Security is ok, and Overhead is not bad!!

@Split addr_limit from stack SOSCON 2018

Optimization on ARM 64

struct thread_info {

addr_limit Kernel Stack
*task }
Unused Register SP (Stack Pointer)

- r
. 1 1
<<< Performance : | Register i» Per-cpu » Memory
' 1
]

Security is ok, and Overhead is near zero!!

—

['Split addr_limit from stack SOSCON 2018

“Tradeoff between Security and Performance

Performance : Register » Per-cpu » Memory

Secu I‘ity . Memory » Per-cpu » Register

Always there is a tradeoff between Performance and Security..

(Are “Register” and “Per-cpu” really safe?? Hmm...

(

\
~Summary

Split addr_Ilimit from stack SOSCON 2018

 ——

Defense solution for fixing SW design problem
have to satisfy both
Security and Performance!!

4+ Bonu
Advanced

Advanced attacks f

//;' SOSCON 2018
\

A\

AN Bypass ANN Exploit Arbitrary
W Vulnerability Memory write
Modify Get Root,
somewhere or Bypass something

Focusing on here!

" Advanced attacks SOSCON 2018

/:\

“Pick two keywords of advanced attacks

Adjacent / Spraying

@Adva nced attacks SOSCON 2018

-?Adjacent, Typel : Heap / Stack

High addr

Kernel Stack

> How about trigger overflows from Stack to Heap?
If stack is completely safe, We can consider this a

Kernel Heap
a.k.a. Large Memory Vulnerabilities, or Stack Clash

Low addr

@Adva nced attacks SOSCON 2018

‘Adjacent, Type2 : Stack of Process A / Stack of Process B

High addr
Kernel Stack
(Process A)
> How about trigger overflows
from Process A's stack to Process B’s stack?
Kernel Stack .
(Process B) - CVE-2010-3848, CVE-2010-3850
Low addr

({ {Adva nced attacks SOSCON 2018

‘Adjacent, Type3 : Heap object A / Heap object B

High addr
Heap object A
(not contain func_ptr)
l > How about trigger overflows
from Heap object A to Heap object B? /
\
Heap object B &
(contain func_ptr) Attacker can’t modify func_ptr in object A,
But, Can modify func_ptr in object B!!
Low addr

@Adva nced attacks SOSCON 2018

-?’Spraying

- Assume that attacker get an ability to write value to kernel memory A.
- Kernel memory A is random address. Attacker doesn’t know what here it is.

[Attacker]

We something!! But,, nothing happens...

Memory A
(dummy)

|

({Adva nced attacks SOSCON 2018
‘Spraying

[Attacker]

(2) Write something!! Function pointer is changed!! Lucky!!
func_ptr func_ptr func_ptr func_ptr func_ptr + (1) SPI'BYI

Memory A

THANK YOU

Sample exploit code is at
https:/ /github.com/jinb-park/linux-exploit/tree/master/

